1. Check whether the following statements are true or false. Give proper justification. [12]
(a) If H is a subgroup of an abelian group G, then H is a normal subgroup of G.

Solution: True. Let $x \in G, h \in H$, we get

$$
\begin{align*}
x h x^{-1} & =x x^{-1} h \quad(\text { as } G \text { is abelian }) \\
& =e h=h \in H . \tag{2}
\end{align*}
$$

(b) Let $(\mathbb{Z},+)$ be a group. The number of distinct left cosets of $6 \mathbb{Z}$ in \mathbb{Z} is 7 .

Solution: False. These are exactly 6 left cosets: $0+6 \mathbb{Z}, 1+6 \mathbb{Z}, 2+6 \mathbb{Z}, 3+$ $6 \mathbb{Z}, 4+6 \mathbb{Z}, 5+6 \mathbb{Z}$.
(c) Let $A, B \subset \mathbb{R}$ be two countable sets. Then the sum $A+B:=\{a+b: a \in$ $A, b \in B\}$ is countable.

Solution: True. $A+B=\cup_{a \in A}(a+B)$.
As $a+B$ is equivalent to B, so $a+B$ is countable.
Also, the countable union of the countable set is countable, therefore $A+B=$ $\cup_{a \in A}(a+B)$ is countable.
(d) Every connected graph with n vertices has at least $n-1$ edges.

Solution: True. Since a connected graph has a tree as a subgraph.
(e) Every cyclic graph $C_{n}(n \geq 3)$ is a bipartite graph.

Solution: False. C_{n} is bipartite if and only if n is even.
(f) There exists a self-complimentary graph with 6 vertices.

Solution: False. Since G is isomorphic to its complement \bar{G}, they have the same number of edges, i.e., $E(G)=E(\bar{G})$.
Note that $E(G)+E(\bar{G})=\frac{n(n-1)}{2}$.
Then $E(G)=\frac{n(n-1)}{4}$. This is only possible if n or $n-1$ is divisible by 4. For instance, a 6-vertex graph cannot be self-complementary.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Write the discontinuity of f at $x_{0} \in \mathbb{R}$ in terms of predicates and quantifiers.

Solution: f is continuous at x_{0} can be written as

$$
\forall \epsilon>0 \exists \delta>0 \forall x\left(\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right)
$$

Thus, f is discontinuous at x_{0} is expressed as

$$
\begin{align*}
& \exists \epsilon>0 \forall \delta>0 \exists x \neg\left(\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right), \tag{2}\\
& \exists \epsilon>0 \forall \delta>0 \exists x\left(\left|x-x_{0}\right|<\delta \wedge\left|f(x)-f\left(x_{0}\right)\right| \geq \epsilon\right) . \tag{1}
\end{align*}
$$

3. Show that every composite number can be written (factorized) as the product of primes and this factorization is unique, apart from the order in which the prime factors occur.
Solution: We prove it using a strong form of mathematical induction. For $n \in$ $\mathbb{N}, P(n): n$ is prime or n is a product of prime. Clearly, 2 is prime, so $P(2)$ is true. Assume $P(m)$ is true, for all m, where $2 \leq m \leq k$. Now to show $P(k+1)$ is true. If $k+1$ is prime, then we are done. If not, there exists $a, b \in \mathbb{N}$, such that $k+1=a b$. Clearly, $a, b<k+1$. Therefore, using induction hypothesis $a=p_{1} p_{2} \ldots p_{r}, b=$ $q_{1} q_{2} \ldots q_{s}$, where each p_{j}, q_{j} are primes. Then $k+1=p_{1} p_{2} \ldots p_{r} q_{1} q_{2} \ldots q_{s}$ is a product of primes. Thus, $P(k+1)$ is true.
Uniqueness: Let n be the least positive integer that has two distinct prime fac-
torizations, that is, $n=q_{1} q_{2} \ldots q_{k}=p_{1} p_{2} \ldots p_{l}$, where each p_{j}, q_{j} are prime. Now, we see that q_{1} divides $p_{1} p_{2} \ldots p_{l}$, so there exists $1 \leq i \leq l$ such that q_{1} divides p_{i}. WLOG, q_{1} divides p_{1}, say. It is possible only if $q_{1}=p_{1}$, as p_{1} and q_{1} are primes. Thus, we are left with $q_{2} q_{3} \ldots q_{k}=p_{2} p_{3} \ldots p_{l}$. It is two distinct prime factorizations of some positive integer strictly less than n, which contradicts that n be the least positive integer with two distinct prime factorizations.
4. Let H be a subgroup of a group G. Show that the relation R on G defined as $x R y$ iff $x y^{-1} \in H$ is an equivalence relation.

Solution:

- Reflexive: $\forall x \in G, x x^{-1}=e \in H$. Thus, $x R x$.
- Symmetric: Let $x, y \in G$ such that $x R y$. This gives $x y^{-1} \in H$. Since H is a subgroup of G, so $\left(x y^{-1}\right)^{-1}=\left(y^{-1}\right)^{-1} x^{-1}=y x^{-1} \in H$. Thus, $y R x$.
- Transitive: Let $x, y, z \in G$ such that $x R y$ and $y R z$. This gives $x y^{-1}, y z^{-1} \in H$. Since H is a subgroup of G, so $\left(x y^{-1}\right)\left(y z^{-1}\right)=x\left(y^{-1} y\right) z^{-1}=x z^{-1} \in H$. This gives $x R z$.

5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function. Show that the set of discontinuity of f, that is, $D=\{x \in \mathbb{R}: f$ is discontinuous at $x\}$, is countable.
Solution: If $D=\emptyset$, we are done.
If not, assume $t \in D$. Since f is increasing function and discontinuous at t, therefore $\lim _{x \rightarrow t^{-}} f(x)<\lim _{x \rightarrow t^{+}} f(x)$.
Then there exists $r_{t} \in \mathbb{Q}$ such that $\lim _{x \rightarrow t^{-}} f(x)<r_{t}<\lim _{x \rightarrow t^{+}} f(x)$.
Let $s \in D, s \neq t$. WLOG assume $t<s$, then $\lim _{x \rightarrow t^{+}} f(x) \leq \lim _{x \rightarrow s^{-}} f(x)$.
Therefore, $r_{t}<\lim _{x \rightarrow t^{+}} f(x) \leq \lim _{x \rightarrow s^{-}} f(x)<r_{s}<\lim _{x \rightarrow s^{+}} f(x)$, where $r_{s} \in \mathbb{Q}$ such that $\lim _{x \rightarrow s^{-}} f(x)<r_{s}<\lim _{x \rightarrow s^{+}} f(x)$.
Define a map $\Phi: D \rightarrow \mathbb{Q}$ as $\Phi(t)=r_{t}$. Then Φ is one-one. Thus, D is countable. [2]
Alternate Solution:
Let $x_{0} \in[a, b]$ be the point of discontinuity of f. Since f is increasing function and discontinuous at x_{0}, therefore $\lim _{x \rightarrow x_{0}^{-}} f(x)<\lim _{x \rightarrow x_{0}^{+}} f(x)$. Consider set $D_{n}=$ $\left\{r \in[a, b]: \lim _{x \rightarrow r^{+}} f(x)-\lim _{x \rightarrow r^{-}} f(x)>\frac{1}{n}\right\}$. Now to show D_{n} is finite. If not,
i.e., D_{n} is an infinite set. Let $x_{1}, x_{2}, x_{3}, \cdots \in D_{n}$. Then

$$
\sum_{n=1}^{\infty}\left(\lim _{x \rightarrow x_{n}^{+}} f(x)-\lim _{x \rightarrow x_{n}^{-}} f(x)\right)>\sum \frac{1}{n} .
$$

Since $\sum \frac{1}{n}$ is divergent so $\sum_{n=1}^{\infty}\left(\lim _{x \rightarrow x_{n}^{+}} f(x)-\lim _{x \rightarrow x_{n}^{-}} f(x)\right)$ is divergent, but $\sum_{n=1}^{\infty}\left(\lim _{x \rightarrow x_{n}^{+}} f(x)-\lim _{x \rightarrow x_{n}^{-}} f(x)\right) \leq f(b)-f(a)$. This gives a contraction. Therefore, the set $F=\{x \in[a, b]: f$ is discontinuous at $x\}=\bigcup_{n=1}^{\infty} D_{n}$ is countable, being the countable union of a finite set. Now $\mathbb{R}=\bigcup_{a \in \mathbb{Z}}[a, a+1]$, which verifies the claim.
6. Find the solution to the recurrence relation $a_{n}=-3 a_{n-1}-3 a_{n-2}-a_{n-3}$, with the initial conditions $a_{0}=1, a_{1}=-2$, and $a_{2}=-1$.
Solution: The characteristic polynomial of the recurrence relation is given as $r^{3}+3 r^{2}+3 r+1$, which is $(r+1)^{3}$.
The characteristic root is $r=-1$.
So the solution to the recurrence relation is of the form

$$
\begin{equation*}
a_{n}=\left(\alpha+\beta n+\gamma n^{2}\right)(-1)^{n}, \tag{2}
\end{equation*}
$$

where α, β, γ are recognized using initial condition. Put $a_{0}=1$, we get $\alpha=1$. Again using $a_{1}=-2, a_{2}=-1$, we get $\beta=3, \gamma=-2$.
Thus, the solution to the recurrence relation is

$$
a_{n}=\left(1+3 n-2 n^{2}\right)(-1)^{n} .
$$

7. How many solutions are there to the equation $x_{1}+x_{2}+x_{3}=10$, where $2 \leq x_{1} \leq$ $7,0 \leq x_{2} \leq 5$ and $6 \leq x_{3}$ are integers?

Solution: The generating function is given as

$$
\begin{align*}
\phi(x) & =\left(x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}\right)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(x^{6}+x^{7}+x^{8}+\ldots\right) \\
& =x^{8}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{2}\left(1+x^{1}+x^{2}+x^{3}+\ldots\right) \\
& =x^{8}\left(\frac{1-x^{6}}{1-x}\right)^{2}\left(\frac{1}{1-x}\right) \\
& =x^{8}\left(1-x^{6}\right)^{2}(1-x)^{-3} \\
& =x^{8}\left(1+x^{12}-2 x^{6}\right) \sum_{k=0}^{\infty}\binom{-3}{k}(-1)^{k} x^{k} \tag{1}
\end{align*}
$$

The coefficient of x^{10} is obtained as $\binom{-3}{2}(-1)^{2}=6$. Thus, the required number of solutions for the given equation is 6 .
8. Let $G=(V, E)$ be a graph with the vertex set V and edge set E as follows:

$$
V=\{0,1, \ldots, 9\} \text { and } E=\{01,02,03,14,15,26,27,38,39,47,48,56,59,68,79\} .
$$

(a) Write the vertex connectivity $\kappa(G)$ and edge connectivity $\lambda(G)$ of G.

Solution: The vertex connectivity $\kappa(G)=3$.
The edge connectivity $\lambda(G)=3$.
(b) Write the eccentricity of vertices 0 and 2 .

Solution: $e(0)=e(2)=2$.
(c) Write the radius, circumference, center, grith, and clique number of G.

Solution: The radius of G is 2 .
The circumference of G is 9 .
The center of G is V.
The girth of G is 5 .
The clique number of G is 2 .
(d) Is G planar? Justify your answer.

Solution: G is not planar.
\because girth of G is $5, e \geq \frac{5 f}{2} \Longleftrightarrow f \leq \frac{2 e}{5}$.
Now, if G is planar, then $v-e+f=2 \Longleftrightarrow 2-v+e=f$.

This gives $7=2-v+e=f \leq \frac{2 e}{5}=6$. A contradiction.

Alternatively: For $V^{\prime}=\{0,1,2,3,6,8,9\}$, the spanning subgraph $G=<V^{\prime}>$ is homeomorphic to $K_{3,3}$, which is non-planar.

