Indian Institute of Information Technology Allahabad Discrete Mathematical Structures (DMS) C3 Review Test: Tentative Marking Scheme

Program: B.Tech. 2 nd Semester (IT)	Full Marks: 50
Date: June 12, 2023	Time: 10:00 AM - 11:30 AM

1. Check whether the following statements are true or false. Give proper justification.

[12]

(a) If H is a subgroup of an abelian group G, then H is a normal subgroup of G.
Solution: True. Let x ∈ G, h ∈ H, we get

$$xhx^{-1} = xx^{-1}h$$
 (as G is abelian)
= $eh = h \in H$. [2]

- (b) Let (Z, +) be a group. The number of distinct left cosets of 6Z in Z is 7.
 Solution: False. These are exactly 6 left cosets: 0 + 6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z, 5 + 6Z.
- (c) Let $A, B \subset \mathbb{R}$ be two countable sets. Then the sum $A + B := \{a + b : a \in A, b \in B\}$ is countable.

Solution: True.
$$A + B = \bigcup_{a \in A} (a + B).$$
 [1]

As a + B is equivalent to B, so a + B is countable.

Also, the countable union of the countable set is countable, therefore $A + B = \bigcup_{a \in A} (a + B)$ is countable. [1]

- (d) Every connected graph with n vertices has at least n 1 edges.
 Solution: True. Since a connected graph has a tree as a subgraph. [2]
- (e) Every cyclic graph C_n $(n \ge 3)$ is a bipartite graph.

Solution: False. C_n is bipartite if and only if n is even. [2]

(f) There exists a self-complementary graph with 6 vertices.

Solution: False. Since G is isomorphic to its complement \overline{G} , they have the same number of edges, i.e., $E(G) = E(\overline{G})$. Note that $E(G) + E(\overline{G}) = \frac{n(n-1)}{2}$. Then $E(G) = \frac{n(n-1)}{4}$. This is only possible if n or n-1 is divisible by 4. For instance, a 6-vertex graph cannot be self-complementary. [2]

2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Write the discontinuity of f at $x_0 \in \mathbb{R}$ in terms of predicates and quantifiers. [3]

Solution: f is continuous at x_0 can be written as

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \ (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon).$$

Thus, f is discontinuous at x_0 is expressed as

$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \ \neg (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon),$$

$$[2]$$

$$\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \ (|x - x_0| < \delta \land |f(x) - f(x_0)| \ge \epsilon).$$

$$[1]$$

Show that every composite number can be written (factorized) as the product of primes and this factorization is unique, apart from the order in which the prime factors occur.

Solution: We prove it using a strong form of mathematical induction. For $n \in \mathbb{N}$, P(n) : n is prime or n is a product of prime. Clearly, 2 is prime, so P(2) is true. Assume P(m) is true, for all m, where $2 \le m \le k$. Now to show P(k+1) is true. If k+1 is prime, then we are done. If not, there exists $a, b \in \mathbb{N}$, such that k+1 = ab. Clearly, a, b < k+1. Therefore, using induction hypothesis $a = p_1 p_2 \dots p_r$, $b = q_1 q_2 \dots q_s$, where each p_j, q_j are primes. Then $k+1 = p_1 p_2 \dots p_r q_1 q_2 \dots q_s$ is a product of primes. Thus, P(k+1) is true. [3]

Uniqueness: Let n be the least positive integer that has two distinct prime fac-

torizations, that is, $n = q_1 q_2 \dots q_k = p_1 p_2 \dots p_l$, where each p_j, q_j are prime. Now, we see that q_1 divides $p_1 p_2 \dots p_l$, so there exists $1 \le i \le l$ such that q_1 divides p_i . WLOG, q_1 divides p_1 , say. It is possible only if $q_1 = p_1$, as p_1 and q_1 are primes. Thus, we are left with $q_2 q_3 \dots q_k = p_2 p_3 \dots p_l$. It is two distinct prime factorizations of some positive integer strictly less than n, which contradicts that n be the least positive integer with two distinct prime factorizations. [2]

- 4. Let H be a subgroup of a group G. Show that the relation R on G defined as xRy iff xy⁻¹ ∈ H is an equivalence relation. [3]
 Solution:
 - Reflexive: $\forall x \in G, xx^{-1} = e \in H$. Thus, xRx. [1]
 - Symmetric: Let $x, y \in G$ such that xRy. This gives $xy^{-1} \in H$. Since H is a subgroup of G, so $(xy^{-1})^{-1} = (y^{-1})^{-1}x^{-1} = yx^{-1} \in H$. Thus, yRx. [1]
 - Transitive: Let $x, y, z \in G$ such that xRy and yRz. This gives $xy^{-1}, yz^{-1} \in H$. Since H is a subgroup of G, so $(xy^{-1})(yz^{-1}) = x(y^{-1}y)z^{-1} = xz^{-1} \in H$. This gives xRz. [1]
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function. Show that the set of discontinuity of f, that is, $D = \{x \in \mathbb{R} : f \text{ is discontinuous at } x\}$, is countable. [6] Solution: If $D = \emptyset$, we are done.

If not, assume $t \in D$. Since f is increasing function and discontinuous at t, therefore $\lim_{x \to t^-} f(x) < \lim_{x \to t^+} f(x).$ [1]

Then there exists $r_t \in \mathbb{Q}$ such that $\lim_{x \to t^-} f(x) < r_t < \lim_{x \to t^+} f(x)$. [1]

Let $s \in D$, $s \neq t$. WLOG assume t < s, then $\lim_{x \to t^+} f(x) \le \lim_{x \to s^-} f(x)$. [1]

Therefore, $r_t < \lim_{x \to t^+} f(x) \le \lim_{x \to s^-} f(x) < r_s < \lim_{x \to s^+} f(x)$, where $r_s \in \mathbb{Q}$ such that $\lim_{x \to s^-} f(x) < r_s < \lim_{x \to s^+} f(x)$. [1]

Define a map $\Phi: D \to \mathbb{Q}$ as $\Phi(t) = r_t$. Then Φ is one-one. Thus, D is countable. [2]

[6]

Alternate Solution:

Let $x_0 \in [a, b]$ be the point of discontinuity of f. Since f is increasing function and discontinuous at x_0 , therefore $\lim_{x\to x_0^-} f(x) < \lim_{x\to x_0^+} f(x)$. Consider set $D_n =$ $\{r \in [a, b] : \lim_{x\to r^+} f(x) - \lim_{x\to r^-} f(x) > \frac{1}{n}\}$. Now to show D_n is finite. If not, i.e., D_n is an infinite set. Let $x_1, x_2, x_3, \dots \in D_n$. Then

$$\sum_{n=1}^{\infty} (\lim_{x \to x_n^+} f(x) - \lim_{x \to x_n^-} f(x)) > \sum \frac{1}{n}.$$

Since $\sum_{n=1}^{1} \text{ is divergent so } \sum_{n=1}^{\infty} (\lim_{x \to x_n^+} f(x) - \lim_{x \to x_n^-} f(x))$ is divergent, but $\sum_{n=1}^{\infty} (\lim_{x \to x_n^+} f(x) - \lim_{x \to x_n^-} f(x)) \leq f(b) - f(a)$. This gives a contraction. Therefore, the set $F = \{x \in [a, b] : f \text{ is discontinuous at } x\} = \bigcup_{n=1}^{\infty} D_n$ is countable, being the countable union of a finite set. Now $\mathbb{R} = \bigcup_{a \in \mathbb{Z}} [a, a + 1]$, which verifies the claim.

6. Find the solution to the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$, with the initial conditions $a_0 = 1$, $a_1 = -2$, and $a_2 = -1$. [7] **Solution:** The characteristic polynomial of the recurrence relation is given as $r^3 + 3r^2 + 3r + 1$, which is $(r + 1)^3$. [1] The characteristic root is r = -1. [1]

So the solution to the recurrence relation is of the form

$$a_n = (\alpha + \beta n + \gamma n^2)(-1)^n, \qquad [2]$$

where α, β, γ are recognized using initial condition. Put $a_0 = 1$, we get $\alpha = 1$. Again using $a_1 = -2, a_2 = -1$, we get $\beta = 3, \gamma = -2$. [1+1+1] Thus, the solution to the recurrence relation is

$$a_n = (1 + 3n - 2n^2)(-1)^n.$$

7. How many solutions are there to the equation $x_1 + x_2 + x_3 = 10$, where $2 \le x_1 \le 7, 0 \le x_2 \le 5$ and $6 \le x_3$ are integers? [3]

Solution: The generating function is given as

$$\begin{split} \phi(x) &= (x^2 + x^3 + x^4 + x^5 + x^6 + x^7)(1 + x + x^2 + x^3 + x^4 + x^5)(x^6 + x^7 + x^8 + \dots) \\ &= x^8(1 + x + x^2 + x^3 + x^4 + x^5)^2(1 + x^1 + x^2 + x^3 + \dots) \\ &= x^8\left(\frac{1 - x^6}{1 - x}\right)^2\left(\frac{1}{1 - x}\right) \\ &= x^8(1 - x^6)^2(1 - x)^{-3} \\ &= x^8(1 + x^{12} - 2x^6)\sum_{k=0}^{\infty} \binom{-3}{k}(-1)^k x^k \end{split}$$
[1]

[1]

The coefficient of x^{10} is obtained as $\binom{-3}{2}(-1)^2 = 6$. Thus, the required number of solutions for the given equation is 6. [1]

8. Let G = (V, E) be a graph with the vertex set V and edge set E as follows: [11]

 $V = \{0, 1, \dots, 9\}$ and $E = \{01, 02, 03, 14, 15, 26, 27, 38, 39, 47, 48, 56, 59, 68, 79\}.$

- (a) Write the vertex connectivity κ(G) and edge connectivity λ(G) of G.
 Solution: The vertex connectivity κ(G) = 3. [1] The edge connectivity λ(G) = 3. [1]
- (b) Write the eccentricity of vertices 0 and 2. **Solution:** e(0) = e(2) = 2. [1/2+1/2]
- (c) Write the radius, circumference, center, grith, and clique number of G.[1]Solution: The radius of G is 2.[1]The circumference of G is 9.[1]The center of G is V.[1]The girth of G is 5.[1]The clique number of G is 2.[1]
- (d) Is G planar? Justify your answer.Solution: G is not planar.
 - $\therefore \text{ girth of } G \text{ is } 5, e \ge \frac{5f}{2} \iff f \le \frac{2e}{5}.$ Now, if G is planar, then $v e + f = 2 \iff 2 v + e = f.$ [1]

This gives $7 = 2 - v + e = f \le \frac{2e}{5} = 6$. A contradiction. [2]

Alternatively: For $V' = \{0, 1, 2, 3, 6, 8, 9\}$, the spanning subgraph $G = \langle V' \rangle$ is homeomorphic to $K_{3,3}$, which is non-planar. [3]